People

Wadim Gerner

Address

Sorbonne Université, Inria, CNRS, Laboratoire Jacques-Louis Lions (LJLL), Paris (France)

Email

wadim DOT gerner AT inria DOT fr

Web

www.ljll.math.upmc.fr

Research Area

Calculus of variations, topological fluid dynamics

Publications

  • Existence and characterisation of magnetic energy minimisers on oriented, compact Riemannian 3-manifolds with boundary in arbitrary helicity classes
    W. Gerner
    Ann. Global Anal. Geom. 58 (2020), no. 3, 267–285
    doi: 10.1007/s10455-020-09727-4

  • Typical field lines of Beltrami flows and boundary field line behaviour of Beltrami flows on simply connected, compact, smooth manifolds with boundary
    W. Gerner
    Ann. Global Anal. Geom. 60 (2021), pages 65–82
    doi: 10.1007/s10455-021-09768-3
    Preprint arXiv:2005.06590

  • Zero set structure of real analytic Beltrami fields
    W. Gerner
    J. Geom. Anal. (2021)
    doi: 10.1007/s12220-021-00633-0
    Preprint arXiv:2005.07620

  • Isoperimetric problem for the first curl eigenvalue
    W. Gerner
    J. Math. Anal. Appl. 519 (2023), no. 2, Paper No. 126808
    doi: 10.1016/j.jmaa.2022.126808
    Preprint arXiv:2203.00718

  • Existence and structure of symmetric Beltrami flows on compact 3-manifolds
    W. Gerner
    Differential Geometry and its Applications, Volume 78, October 2021, 101801
    doi: 10.1016/j.difgeo.2021.101801
    Preprint arXiv:2006.14507

  • Optimal convex domains for the first curl eigenvalue
    A. Enciso, W. Gerner, and D. Peralta-Salas
    Preprint arXiv:2202.09204

  • A unique continuation theorem for exterior differential forms on Riemannian manifolds with boundary
    W. Gerner
    Preprint arXiv:2207.02029

  • Optimal metrics for the first curl eigenvalue on 3-manifolds
    A. Enciso, W. Gerner, and D. Peralta-Salas
    Preprint arXiv:2305.06681

  • Existence of optimal domains for the helicity maximisation problem among domains satisfying a uniform ball condition
    W. Gerner
    Preprint arXiv:2305.13642

  • Properties of the Biot-Savart operator acting on surface currents
    W. Gerner
    Preprint arXiv:2311.03108